Coupling Ishikawa algorithms with hybrid techniques for pseudocontractive mappings
نویسندگان
چکیده
منابع مشابه
Modified Mann-Halpern Algorithms for Pseudocontractive Mappings
and Applied Analysis 3 We know that T is pseudocontractive if and only if T satisfies the condition Tx − Ty 2 ≤ x − y 2 + (I − T)x − (I − T)y 2 (15) for all x, y ∈ C. Since u ∈ Fix(T), we have from (15) that ‖Tx − u‖ 2 ≤ ‖x − u‖ 2 + ‖x − Tx‖ 2 , (16) for all x ∈ C. By using (13) and (16), we obtain Tyn − u 2 ≤ yn − u 2 + yn − Tyn 2 = (1 − γn)xn + γnT...
متن کاملIshikawa Iteration with Errors for Approximating Fixed Points of Strictly Pseudocontractive Mappings of Browder-Petryshyn Type
Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a nonempty closed convex subset of E and T : K → K be a strictly pseudocontractive mapping in the sense of F. E. Browder and W. V. Petryshyn [1]. Let {un} be a bounded sequence in K and {αn}, {βn}, {γn} be real sequences in [0,1] satisfying some restrictions. Let {xn} be the bounded sequence in K generated from any given x1 ∈ K...
متن کاملReconsiderations on the Equivalence of Convergence between Mann and Ishikawa Iterations for Asymptotically Pseudocontractive Mappings
متن کامل
On the Convergence of Mann and Ishikawa Iterative Processes for Asymptotically φ-Strongly Pseudocontractive Mappings
and Applied Analysis 3 proving: 1 a fixed point theorem for an asymptotically pseudocontractive mapping that is also uniformly L-Lipschitzian and uniformly asymptotically regular, 2 that the set of fixed points of T is closed and convex, and 3 the strong convergence of a CQ-iterative method. The literature on asymptotical-type mappings is very wide see, 7–15 . In 1967, Browder 16 and Kato 17 , ...
متن کاملHybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense
and Applied Analysis 3 (b) η-strongly monotone if there exists a constant η > 0 such that ⟨Sx − Sy, x − y⟩ ≥ η x − y 2 , ∀x, y ∈ C; (12) (c) α-inverse-strongly monotone (α-ism) if there exists a constant α > 0 such that ⟨Sx − Sy, x − y⟩ ≥ α Sx − Sy 2 , ∀x, y ∈ C. (13) Obviously, if S is α-inverse-strongly monotone, then it is monotone and (1/α)-Lipschitz continuous. It can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fixed Point Theory and Applications
سال: 2013
ISSN: 1687-1812
DOI: 10.1186/1687-1812-2013-211